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1.7

Performance 
Analysis and 

Measurement

Performance Evaluation

 Two aspects:

◦ Space Complexity
 How much memory space is used?

◦ Time Complexity
 How much execution time is needed?

 Two approaches:

◦ Performance Analysis

 machine independent

 a prior estimate

◦ Performance Measurement

 machine dependent

 a posterior measure
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1.7

Uses Of Performance Analysis

Determine practicality of algorithm

Predict run time on large instance

Compare algorithms with different 

complexity

e.g., O(n) v.s. O(n2)

1.7.1
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Performance Analysis

 Space complexity : 𝑆(𝑃) = 𝐶 + 𝑆𝑃(𝐼)

 𝐶 is a fixed part:

◦ Independent of the size of input and output.

◦ Space for instruction and static variables, 

fixed-size structured variables, constants.

 𝑆𝑃(𝐼) is a variable part:

◦ Depends on the specific problem instance.

◦ Space of referenced variable and recursion 

stack space (Instance Characteristics).
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1.7.1

Instance Characteristics (I)

 Commonly used characteristics (I) include 
the size of the input and output of the 
problem.

 We shall concentrate solely on estimating 
the 2nd part, SP(I).

 Ex1. sorting(A[], n)
Then I= number of integers = n.

 Ex 2. Summation of 1 to n, i.e., 1+2+3+…+n
Then I= value of n = n.

21

Space Complexity: Simple 

Function

 I = a, b, c

 C = space for the program + space for 

variables a, b, c, Abc = constant

 𝑆𝐴𝑏𝑐(𝐼) = 0

 𝑆 𝐴𝑏𝑐 = 𝐶 + 𝑆𝐴𝑏𝑐(𝐼) = constant
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float Abc(float a, b, c)

{

return a+b+b*c+(a+b-c)/(a+b)+4.0;

} 
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Space Complexity : Iterative 

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝐶= constant
 𝑆𝑆𝑢𝑚(𝐼) = 0 (A stores only the address of 

array)

 𝑆(𝑆𝑢𝑚) = 𝐶 + 𝑆𝑆𝑢𝑚(𝐼) = constant
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float Sum(float *A, const int n)

{ float s = 0;

for(int i=0; i<n; i++) 

s += A[i]; 

return s;

} 

Space Complexity : Recursive 

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝐶= constant

 Each recursive call “Rsum” requires 4 1 + 1 + 1 =
12 bytes.

 Number of calls:𝑅𝑠𝑢𝑚(𝐴, 𝑛) 𝑅𝑠𝑢𝑚(𝐴, 𝑛 − 1)
 …  𝑅𝑠𝑢𝑚(𝐴, 0) ⇒ 𝑛 + 1 calls 

 𝑆 𝑅𝑠𝑢𝑚 = 𝐶 + 𝑆𝑅𝑠𝑢𝑚(𝑛) = const + 12 (𝑛 + 1)

24

float Rsum(float *A, const int n)

{  

if (n<=0) return A[0];

else return (Rsum(A, n-1) + A[n-1]);

} 

Time Complexity

𝑇(𝑃) = 𝐶 + 𝑇𝑃(𝐼)

 𝐶 is a constant:

◦ Compile time.

 𝑇𝑃(𝐼) is variable:

◦ Execution time.
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1.7.1.2
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Performance Analysis

 How to evaluate TP(I) ?
◦ Count every Add, Sub, Multiply, … etc.
◦ Practically infeasible because each instruction 

takes different running time at different 
machine.

 Use “program step” to estimate TP(I)
◦ “program step” = a statement whose 

execution time is independent of instance 
characteristics(I).  
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abc=a+b+b*c;  one program step

a=2;                 one program step

Time Complexity : Iterative 

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝑇𝑆𝑢𝑚(𝐼) = 1 + 𝑛 + 1 + 𝑛 + 1 = 2𝑛 + 3

 𝑇(𝑆𝑢𝑚) = 𝐶 + 𝑇𝑆𝑢𝑚(𝑛) = const+(2𝑛 + 3)
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float Sum(float *A, const int n)

{ float s = 0; // 1 step

for(int i=0; i<n; i++) // n+1 steps

s += A[i]; // n steps

return s; // 1 step

} 

Time Complexity : Recursive 

Summation

 I = n (number of elements for summation)

 TRsum(n) = ?
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float Rsum(float *A, const int n)

{  

if (n<=0) // 1 step

return A[0]; // 1 step

else return(Rsum(A,n-1)+A[n-1]); // 1 step

} 
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Time Complexity : Recursive 

Summation

 𝐼 = 𝑛 (number of elements for summation)

 𝑇𝑅𝑠𝑢𝑚(0) = 2

 𝑇𝑅𝑠𝑢𝑚 𝑛 = 2 + 𝑇𝑅𝑠𝑢𝑚 𝑛 − 1
= 2 + (2 + 𝑇𝑅𝑠𝑢𝑚(𝑛 − 2))
= …
= 2𝑛 + 𝑇𝑅𝑠𝑢𝑚(0) = 2𝑛 + 2
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float Rsum(float *A, const int n)

{  

if (n<=0) // 1 step

return A[0]; // 1 step

else return (Rsum(A, n-1) + A[n-1]);// 1 step

} 

Time Complexity : Matrix 

Addition

 𝐼 = 𝑚(𝑟𝑜𝑤𝑠), 𝑛 (𝑐𝑜𝑙𝑢𝑚𝑛𝑠)

 𝑇𝐴𝑑𝑑 𝐼 = (𝑚 + 1) +𝑚(𝑛 + 1) +𝑚𝑛
= 2𝑚𝑛 + 2𝑚 + 1

 𝑇 𝐴𝑑𝑑 = 𝐶 + 𝑇𝐴𝑑𝑑(𝐼)
= 𝑐𝑜𝑛𝑠𝑡 + (2𝑚𝑛 + 2𝑚 + 1)
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void Add(int **a, int **b, int **c, int m, int n)

{

for(int i=0; i<m; i++) // m+1 steps

for(int j=0; j<n; j++) // m*(n+1) steps

c[i][j] = a[i][j]+b[i][j]; // m*n steps

} 

Observation on Step Counts

 In the previous examples :

𝑇𝑆𝑢𝑚(𝑛) = 2𝑛 + 3 steps

𝑇𝑅𝑠𝑢𝑚(𝑛) = 2𝑛 + 2 steps

 So, Rsum is faster than Sum?

◦ No!

◦ ∵The execution time of each step is different.

 “Growth Rate” is more critical

◦ “How the execution time changes in the instance 

characteristics?”

31
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Program Growth Rate

 In the Sum program, 𝑇𝑆𝑢𝑚(𝑛) = 2𝑛 + 3 means 
when 𝑛 is tenfold (10𝑋), the execution time 
𝑇𝑆𝑢𝑚(𝑛) is tenfold (10𝑋). 

 We say that Sum program runs in linear time.

 𝑇𝑅𝑠𝑢𝑚(𝑛) = 2𝑛 + 2 also runs in linear time.

 We say 𝑇𝑆𝑢𝑚(𝑛) and 𝑇𝑅𝑠𝑢𝑚(𝑛) have the same 
growth rate, and are equal in time complexity!
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Asymptotic Notation

 To make meaningful (but inexact) 

statements about the time and space 

complexities of a program.

◦ Predict the growth rate.

 Two programs with time complexity

◦ P1: 𝑐1𝑛
2+ 𝑐2𝑛

◦ P2: 𝑐3𝑛

◦Which one runs faster?
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1.7.1.3

Asymptotic Notation

 Scenario 1: 𝑐1 = 1, 𝑐2 = 2, and 𝑐3 = 100
◦ 𝑃1(𝑛2 + 2𝑛) ≤ 𝑃2(100𝑛) for 𝑛 ≤ 98.

 Scenario 2: 𝑐1 = 1, 𝑐2 = 2, and 𝑐3 = 1000

◦ 𝑃1(𝑛2 + 2𝑛) ≤ 𝑃2(1000𝑛) for 𝑛 ≤ 998.

• No matter what values 𝑐1, 𝑐2 and 𝑐3 are, there 

will be an n beyond which 𝑐1𝑛
2+ 𝑐2𝑛 > 𝑐3𝑛

• Therefore, we should compare the 

complexity for a sufficiently large value 

of 𝑛

34

1.7.1.3
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Notation: Big-O (O)

 Definition:
𝑓(𝑛) = 𝑂(𝑔(𝑛)) iff there exist 𝒄, 
𝒏𝟎 > 𝟎 such that 𝒇(𝒏) ≤ 𝒄𝒈(𝒏) for 
all 𝒏 ≥ 𝒏𝟎.

 Ex1. 3𝑛 + 2 = 𝑂(𝑛)
◦ 3𝑛 + 2 ≤ 4𝑛 for all 𝑛 ≥ 2

 Ex2. 100𝑛 + 6 = 𝑂(𝑛)
◦ 100𝑛 + 6 ≤ 101𝑛 for all 𝑛 ≥ 6

 Ex3. 10𝑛2 + 4𝑛 + 2 = 𝑂(𝑛2)
◦ 10𝑛2+ 4𝑛 + 2 ≤ 11 𝑛2 for all 𝑛 ≥ 5
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The upper bound or worst-case running time

Notation: Omega (Ω)

Definition: 𝑓(𝑛) = Ω(𝑔(𝑛)) iff
there exist 𝒄, 𝒏𝟎 > 𝟎 such that 
𝒇(𝒏) ≥ 𝒄𝒈(𝒏) for all all 𝒏 ≥ 𝒏𝟎.

 Ex1.  3𝑛 + 2 = Ω(𝑛)
◦ since 3𝑛 + 2 ≥ 3𝑛 for all 𝑛 ≥ 1

 Ex2.  100𝑛 + 6 = Ω(𝑛)
◦ since 100𝑛 + 6 ≥ 100 𝑛 for all 𝑛 ≥ 1

 Ex3.  10𝑛2+ 4𝑛 + 2 = Ω(𝑛2)
◦ since 10𝑛2+ 4𝑛 + 2 ≥ 𝑛2 for all 𝑛 ≥ 1
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The lower bound or best-case running time

Notation: Theta (Θ)

Definition: 𝑓(𝑛) = Θ(𝑔(𝑛)) iff

𝒇(𝒏) = 𝑶(𝒈(𝒏)) and 𝒇(𝒏) =
𝛀(𝒈(𝒏)).

• Ex1.  3𝑛 + 2 = Θ(𝑛)

 Ex2.  100𝑛 + 6 = Θ(𝑛)

 Ex3.  10𝑛2+ 4𝑛 + 2 = Θ(𝑛2)
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The tight bound or average-case running time
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Theorem 1.2

If 𝑓(𝑛) = 𝑎𝑚𝑛
𝑚 +⋯+ 𝑎1𝑛 + 𝑎0, 𝑎𝑚 > 0,

then 𝑓(𝑛) = 𝑂(𝑛𝑚).

◦ 3𝑛 + 2 = 𝑂(𝑛)

◦ 100𝑛 + 6 = 𝑂(𝑛)

◦ 10𝑛2 + 4𝑛 + 2 = 𝑂(𝑛2)

◦ 6𝑛4 + 1000 𝑛3 + 𝑛2 = 𝑂(𝑛4)

 Leading constants and lower-order terms do 

not matter.
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Theorem 1.2 Proof

𝑓(𝑛) = 𝑎𝑚𝑛
𝑚 + … + 𝑎1𝑛 + 𝑎0

≤ |𝑎𝑚|𝑛
𝑚 + … + |𝑎1|𝑛 + |𝑎0|

≤ 𝑛𝑚(|𝑎𝑚| + … + |𝑎1| + |𝑎0|)

≤ 𝑛𝑚 𝑐 for 𝑛 ≥ 1

So, 𝑓(𝑛) = 𝑂(𝑛𝑚)
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Quiz

 n2 - 10n – 6 = O(?)

 n + log n = O(?)

 n + n log n = O(?)

 n2 + log n = O(?)

 2n + n10000 = O(?)

 n4 + 1000 n3 + n2 = O(n4), True or false?

 n4 + 1000 n3 + n2 = O(n5), True or false?

40
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Naming Common Functions

Complexity Naming

O(1) Constant time

O(log n) Logarithmic time

O(n log n) O(log n) ≤ . ≤ O(n2) 

O(n2) Quadratic time

O(n3) Cubic time

O(n100) Polynomial time

O(2n) Exponential time

43

When n is large enough, the latter terms 

take more time than the former ones.

Plot of Common Function 

Values

44
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Execution Time Comparison
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1.7.1

T1.8

f (n)

n 𝑛 𝑛 log2 𝑛 𝑛2 𝑛3 𝑛4 𝑛10 2𝑛

10
20
30
40
50

100
103

104

105

106

.01 s

.02 s

.03 s

.04 s

.05 s

.10 s
1 s

10 s
100 s

1ms

.03 s

.09 s

.15 s

.21 s

.28 s

.66 s
9.96 s
130 s

1.66 ms
19.92ms

.1 s

.4 s

.9 s
1.6 s
2.5 s
10 s
1 ms

100 ms
10s

16.67m

1 s
8 s

27 s
64 s

125 s
1ms

1s
16.67m
11.57d
31.71y

10 s
160 s
810 s
2.56ms
6.25ms
100ms

16.67m
115.7d
3171y

3.17*107y

10s
2.84h
6.83d
121d
3.1y

3171y
3.17*1013y
3.17*1023y
3.17*1033y
3.17*1043y

1s
1ms

1s
18m
13d

4*1013y
32*10283y

…
…
…

s = microsecond = 10-6 second; ms = milliseconds = 10-3 seconds
s = seconds; m = minutes; h = hours; d = days; y = years;
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Compute Execution Time in 

Big-O

 Two approaches to compute the time 

complexity of a program in big-O

 Approach 1:

Step1: Compute the total step-count.

Step2: Take big-O using theorem 1.2.

 Approach 2:

Step1: Take big-O on each step.

Step2: Sum up the big-O of all steps.
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Rule of Sum

 If f1(n) = O(g1(n)), and f2(n)=O(g2(n)), then 

f1(n) + f2(n) = O(max(g1(n), g2(n)).

◦ Ex. f1(n) = O(n), f2(n) = O(n2)

Then f1(n) + f2(n) = O(n2).

◦ Ex. f1(n) = O(n), f2(n) = O(n)

Then f1(n) + f2(n) = O(n).

 Good for computing the time complexity 

of a sequential program.
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Rule of Product

f(n) = O(n ∙ n ∙ 1) = O(n2).

 If f1(n) = O(g1(n)), and f2(n)=O(g2(n)), 

then f1(n) ∙ f2(n) = O(g1(n) ∙ g2(n)).

◦ Ex. f1(n) = O(n), f2(n) = O(n)

Then f1(n) ∙ f2(n) = O(n2).

 Applicable to nested loops.

48

for (i=0; i<n; i++) {        // O(n)

for (j=0; j<n; j++)       // O(n)

sum := sum + 1;        // O(1) 

}
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Complexity of Binary Search

49

int BinarySearch(int *A, const int x, const int n)

{ int left=0, right=n-1;

while (left <= right) 

{ // more integers to check

int middle = (left+right)/2;

if (x < A[middle])  right = middle-1;

else if (x > A[middle])  left = middle+1;

else return middle;

} // end of while

return -1; // not found

}

O(1)

O(1)

O(1)

O(1)

O(?)

Complexity of Binary Search

 Analysis of the while loop:
◦ Iteration 1:  n values to be searched

◦ Iteration 2:  n/2 left for searching

◦ Iteration 3:  n/4 left for searching

◦ …

◦ Iteration k+1: n/(2k) left for searching

When n/(2k) = 1, searching must finish.

i.e. n = 2k ⇒ k = log2 n

 Hence, worst-case exe time of binary 

search is 𝑂(log2𝑛).
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Performance Measurement

 Obtain actual space and time requirement 

when running a program.

 How to do time measurement in code?

◦ Method 1: Use clock(),  measured in clock 

ticks

◦ Method 2: Use time(), measured in seconds

 To time a short program, it is necessary 

to repeat it many times, and then take the 

average.

51

1.7.2
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Performance Measurement

Method 1: Use clock(),  measured in clock 

ticks

52

#include <time.h>

void main() 

{

clock_t start = clock();

// main body of program comes here!

clock_t stop = clock();

double duration = ((double) (stop-start))

/ CLOCKS_PER_SEC; 

}

Performance Measurement

Method 2: Use time(), measured in seconds
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#include <time.h>

void main() 

{

time_t start = time(NULL);

// main body of program comes here!

time_t stop = time(NULL);

double duration = (double) difftime(stop,start);

}


