
Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/9 © Ren-Song Tsay, NTHU, Taiwan 17

1.7

Performance
Analysis and

Measurement

Performance Evaluation

 Two aspects:

◦ Space Complexity
 How much memory space is used?

◦ Time Complexity
 How much execution time is needed?

 Two approaches:

◦ Performance Analysis

 machine independent

 a prior estimate

◦ Performance Measurement

 machine dependent

 a posterior measure

18

1.7

Uses Of Performance Analysis

Determine practicality of algorithm

Predict run time on large instance

Compare algorithms with different

complexity

e.g., O(n) v.s. O(n2)

1.7.1

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 2

Performance Analysis

 Space complexity : 𝑆(𝑃) = 𝐶 + 𝑆𝑃(𝐼)

 𝐶 is a fixed part:

◦ Independent of the size of input and output.

◦ Space for instruction and static variables,

fixed-size structured variables, constants.

 𝑆𝑃(𝐼) is a variable part:

◦ Depends on the specific problem instance.

◦ Space of referenced variable and recursion

stack space (Instance Characteristics).

20

1.7.1

Instance Characteristics (I)

 Commonly used characteristics (I) include
the size of the input and output of the
problem.

 We shall concentrate solely on estimating
the 2nd part, SP(I).

 Ex1. sorting(A[], n)
Then I= number of integers = n.

 Ex 2. Summation of 1 to n, i.e., 1+2+3+…+n
Then I= value of n = n.

21

Space Complexity: Simple

Function

 I = a, b, c

 C = space for the program + space for

variables a, b, c, Abc = constant

 𝑆𝐴𝑏𝑐(𝐼) = 0

 𝑆 𝐴𝑏𝑐 = 𝐶 + 𝑆𝐴𝑏𝑐(𝐼) = constant

22

float Abc(float a, b, c)

{

return a+b+b*c+(a+b-c)/(a+b)+4.0;

}

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 3

Space Complexity : Iterative

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝐶= constant
 𝑆𝑆𝑢𝑚(𝐼) = 0 (A stores only the address of

array)

 𝑆(𝑆𝑢𝑚) = 𝐶 + 𝑆𝑆𝑢𝑚(𝐼) = constant

23

float Sum(float *A, const int n)

{ float s = 0;

for(int i=0; i<n; i++)

s += A[i];

return s;

}

Space Complexity : Recursive

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝐶= constant

 Each recursive call “Rsum” requires 4 1 + 1 + 1 =
12 bytes.

 Number of calls:𝑅𝑠𝑢𝑚(𝐴, 𝑛) 𝑅𝑠𝑢𝑚(𝐴, 𝑛 − 1)
 … 𝑅𝑠𝑢𝑚(𝐴, 0) ⇒ 𝑛 + 1 calls

 𝑆 𝑅𝑠𝑢𝑚 = 𝐶 + 𝑆𝑅𝑠𝑢𝑚(𝑛) = const + 12 (𝑛 + 1)

24

float Rsum(float *A, const int n)

{

if (n<=0) return A[0];

else return (Rsum(A, n-1) + A[n-1]);

}

Time Complexity

𝑇(𝑃) = 𝐶 + 𝑇𝑃(𝐼)

 𝐶 is a constant:

◦ Compile time.

 𝑇𝑃(𝐼) is variable:

◦ Execution time.

25

1.7.1.2

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 4

Performance Analysis

 How to evaluate TP(I) ?
◦ Count every Add, Sub, Multiply, … etc.
◦ Practically infeasible because each instruction

takes different running time at different
machine.

 Use “program step” to estimate TP(I)
◦ “program step” = a statement whose

execution time is independent of instance
characteristics(I).

26

abc=a+b+b*c; one program step

a=2; one program step

Time Complexity : Iterative

Summation

 𝐼 = 𝑛 (number of elements to be summed)

 𝑇𝑆𝑢𝑚(𝐼) = 1 + 𝑛 + 1 + 𝑛 + 1 = 2𝑛 + 3

 𝑇(𝑆𝑢𝑚) = 𝐶 + 𝑇𝑆𝑢𝑚(𝑛) = const+(2𝑛 + 3)

27

float Sum(float *A, const int n)

{ float s = 0; // 1 step

for(int i=0; i<n; i++) // n+1 steps

s += A[i]; // n steps

return s; // 1 step

}

Time Complexity : Recursive

Summation

 I = n (number of elements for summation)

 TRsum(n) = ?

28

float Rsum(float *A, const int n)

{

if (n<=0) // 1 step

return A[0]; // 1 step

else return(Rsum(A,n-1)+A[n-1]); // 1 step

}

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 5

Time Complexity : Recursive

Summation

 𝐼 = 𝑛 (number of elements for summation)

 𝑇𝑅𝑠𝑢𝑚(0) = 2

 𝑇𝑅𝑠𝑢𝑚 𝑛 = 2 + 𝑇𝑅𝑠𝑢𝑚 𝑛 − 1
= 2 + (2 + 𝑇𝑅𝑠𝑢𝑚(𝑛 − 2))
= …
= 2𝑛 + 𝑇𝑅𝑠𝑢𝑚(0) = 2𝑛 + 2

29

float Rsum(float *A, const int n)

{

if (n<=0) // 1 step

return A[0]; // 1 step

else return (Rsum(A, n-1) + A[n-1]);// 1 step

}

Time Complexity : Matrix

Addition

 𝐼 = 𝑚(𝑟𝑜𝑤𝑠), 𝑛 (𝑐𝑜𝑙𝑢𝑚𝑛𝑠)

 𝑇𝐴𝑑𝑑 𝐼 = (𝑚 + 1) +𝑚(𝑛 + 1) +𝑚𝑛
= 2𝑚𝑛 + 2𝑚 + 1

 𝑇 𝐴𝑑𝑑 = 𝐶 + 𝑇𝐴𝑑𝑑(𝐼)
= 𝑐𝑜𝑛𝑠𝑡 + (2𝑚𝑛 + 2𝑚 + 1)

30

void Add(int **a, int **b, int **c, int m, int n)

{

for(int i=0; i<m; i++) // m+1 steps

for(int j=0; j<n; j++) // m*(n+1) steps

c[i][j] = a[i][j]+b[i][j]; // m*n steps

}

Observation on Step Counts

 In the previous examples :

𝑇𝑆𝑢𝑚(𝑛) = 2𝑛 + 3 steps

𝑇𝑅𝑠𝑢𝑚(𝑛) = 2𝑛 + 2 steps

 So, Rsum is faster than Sum?

◦ No!

◦ ∵The execution time of each step is different.

 “Growth Rate” is more critical

◦ “How the execution time changes in the instance

characteristics?”

31

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 6

Program Growth Rate

 In the Sum program, 𝑇𝑆𝑢𝑚(𝑛) = 2𝑛 + 3 means
when 𝑛 is tenfold (10𝑋), the execution time
𝑇𝑆𝑢𝑚(𝑛) is tenfold (10𝑋).

 We say that Sum program runs in linear time.

 𝑇𝑅𝑠𝑢𝑚(𝑛) = 2𝑛 + 2 also runs in linear time.

 We say 𝑇𝑆𝑢𝑚(𝑛) and 𝑇𝑅𝑠𝑢𝑚(𝑛) have the same
growth rate, and are equal in time complexity!

32

Asymptotic Notation

 To make meaningful (but inexact)

statements about the time and space

complexities of a program.

◦ Predict the growth rate.

 Two programs with time complexity

◦ P1: 𝑐1𝑛
2+ 𝑐2𝑛

◦ P2: 𝑐3𝑛

◦Which one runs faster?

33

1.7.1.3

Asymptotic Notation

 Scenario 1: 𝑐1 = 1, 𝑐2 = 2, and 𝑐3 = 100
◦ 𝑃1(𝑛2 + 2𝑛) ≤ 𝑃2(100𝑛) for 𝑛 ≤ 98.

 Scenario 2: 𝑐1 = 1, 𝑐2 = 2, and 𝑐3 = 1000

◦ 𝑃1(𝑛2 + 2𝑛) ≤ 𝑃2(1000𝑛) for 𝑛 ≤ 998.

• No matter what values 𝑐1, 𝑐2 and 𝑐3 are, there

will be an n beyond which 𝑐1𝑛
2+ 𝑐2𝑛 > 𝑐3𝑛

• Therefore, we should compare the

complexity for a sufficiently large value

of 𝑛

34

1.7.1.3

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 7

Notation: Big-O (O)

 Definition:
𝑓(𝑛) = 𝑂(𝑔(𝑛)) iff there exist 𝒄,
𝒏𝟎 > 𝟎 such that 𝒇(𝒏) ≤ 𝒄𝒈(𝒏) for
all 𝒏 ≥ 𝒏𝟎.

 Ex1. 3𝑛 + 2 = 𝑂(𝑛)
◦ 3𝑛 + 2 ≤ 4𝑛 for all 𝑛 ≥ 2

 Ex2. 100𝑛 + 6 = 𝑂(𝑛)
◦ 100𝑛 + 6 ≤ 101𝑛 for all 𝑛 ≥ 6

 Ex3. 10𝑛2 + 4𝑛 + 2 = 𝑂(𝑛2)
◦ 10𝑛2+ 4𝑛 + 2 ≤ 11 𝑛2 for all 𝑛 ≥ 5

35
The upper bound or worst-case running time

Notation: Omega (Ω)

Definition: 𝑓(𝑛) = Ω(𝑔(𝑛)) iff
there exist 𝒄, 𝒏𝟎 > 𝟎 such that
𝒇(𝒏) ≥ 𝒄𝒈(𝒏) for all all 𝒏 ≥ 𝒏𝟎.

 Ex1. 3𝑛 + 2 = Ω(𝑛)
◦ since 3𝑛 + 2 ≥ 3𝑛 for all 𝑛 ≥ 1

 Ex2. 100𝑛 + 6 = Ω(𝑛)
◦ since 100𝑛 + 6 ≥ 100 𝑛 for all 𝑛 ≥ 1

 Ex3. 10𝑛2+ 4𝑛 + 2 = Ω(𝑛2)
◦ since 10𝑛2+ 4𝑛 + 2 ≥ 𝑛2 for all 𝑛 ≥ 1

36

The lower bound or best-case running time

Notation: Theta (Θ)

Definition: 𝑓(𝑛) = Θ(𝑔(𝑛)) iff

𝒇(𝒏) = 𝑶(𝒈(𝒏)) and 𝒇(𝒏) =
𝛀(𝒈(𝒏)).

• Ex1. 3𝑛 + 2 = Θ(𝑛)

 Ex2. 100𝑛 + 6 = Θ(𝑛)

 Ex3. 10𝑛2+ 4𝑛 + 2 = Θ(𝑛2)

37

The tight bound or average-case running time

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 8

Theorem 1.2

If 𝑓(𝑛) = 𝑎𝑚𝑛
𝑚 +⋯+ 𝑎1𝑛 + 𝑎0, 𝑎𝑚 > 0,

then 𝑓(𝑛) = 𝑂(𝑛𝑚).

◦ 3𝑛 + 2 = 𝑂(𝑛)

◦ 100𝑛 + 6 = 𝑂(𝑛)

◦ 10𝑛2 + 4𝑛 + 2 = 𝑂(𝑛2)

◦ 6𝑛4 + 1000 𝑛3 + 𝑛2 = 𝑂(𝑛4)

 Leading constants and lower-order terms do

not matter.

38

Theorem 1.2 Proof

𝑓(𝑛) = 𝑎𝑚𝑛
𝑚 + … + 𝑎1𝑛 + 𝑎0

≤ |𝑎𝑚|𝑛
𝑚 + … + |𝑎1|𝑛 + |𝑎0|

≤ 𝑛𝑚(|𝑎𝑚| + … + |𝑎1| + |𝑎0|)

≤ 𝑛𝑚 𝑐 for 𝑛 ≥ 1

So, 𝑓(𝑛) = 𝑂(𝑛𝑚)

39

Quiz

 n2 - 10n – 6 = O(?)

 n + log n = O(?)

 n + n log n = O(?)

 n2 + log n = O(?)

 2n + n10000 = O(?)

 n4 + 1000 n3 + n2 = O(n4), True or false?

 n4 + 1000 n3 + n2 = O(n5), True or false?

40

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 9

Naming Common Functions

Complexity Naming

O(1) Constant time

O(log n) Logarithmic time

O(n log n) O(log n) ≤ . ≤ O(n2)

O(n2) Quadratic time

O(n3) Cubic time

O(n100) Polynomial time

O(2n) Exponential time

43

When n is large enough, the latter terms

take more time than the former ones.

Plot of Common Function

Values

44

1.7.1

F1.4

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

 →

↑

n2 2n

nn log

n

nlog

n

f

Execution Time Comparison

45

1.7.1

T1.8

f (n)

n 𝑛 𝑛 log2 𝑛 𝑛2 𝑛3 𝑛4 𝑛10 2𝑛

10
20
30
40
50

100
103

104

105

106

.01 s

.02 s

.03 s

.04 s

.05 s

.10 s
1 s

10 s
100 s

1ms

.03 s

.09 s

.15 s

.21 s

.28 s

.66 s
9.96 s
130 s

1.66 ms
19.92ms

.1 s

.4 s

.9 s
1.6 s
2.5 s
10 s
1 ms

100 ms
10s

16.67m

1 s
8 s

27 s
64 s

125 s
1ms

1s
16.67m
11.57d
31.71y

10 s
160 s
810 s
2.56ms
6.25ms
100ms

16.67m
115.7d
3171y

3.17*107y

10s
2.84h
6.83d
121d
3.1y

3171y
3.17*1013y
3.17*1023y
3.17*1033y
3.17*1043y

1s
1ms

1s
18m
13d

4*1013y
32*10283y

…
…
…

s = microsecond = 10-6 second; ms = milliseconds = 10-3 seconds
s = seconds; m = minutes; h = hours; d = days; y = years;

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 10

Compute Execution Time in

Big-O

 Two approaches to compute the time

complexity of a program in big-O

 Approach 1:

Step1: Compute the total step-count.

Step2: Take big-O using theorem 1.2.

 Approach 2:

Step1: Take big-O on each step.

Step2: Sum up the big-O of all steps.

46

Rule of Sum

 If f1(n) = O(g1(n)), and f2(n)=O(g2(n)), then

f1(n) + f2(n) = O(max(g1(n), g2(n)).

◦ Ex. f1(n) = O(n), f2(n) = O(n2)

Then f1(n) + f2(n) = O(n2).

◦ Ex. f1(n) = O(n), f2(n) = O(n)

Then f1(n) + f2(n) = O(n).

 Good for computing the time complexity

of a sequential program.

47

Rule of Product

f(n) = O(n ∙ n ∙ 1) = O(n2).

 If f1(n) = O(g1(n)), and f2(n)=O(g2(n)),

then f1(n) ∙ f2(n) = O(g1(n) ∙ g2(n)).

◦ Ex. f1(n) = O(n), f2(n) = O(n)

Then f1(n) ∙ f2(n) = O(n2).

 Applicable to nested loops.

48

for (i=0; i<n; i++) { // O(n)

for (j=0; j<n; j++) // O(n)

sum := sum + 1; // O(1)

}

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 11

Complexity of Binary Search

49

int BinarySearch(int *A, const int x, const int n)

{ int left=0, right=n-1;

while (left <= right)

{ // more integers to check

int middle = (left+right)/2;

if (x < A[middle]) right = middle-1;

else if (x > A[middle]) left = middle+1;

else return middle;

} // end of while

return -1; // not found

}

O(1)

O(1)

O(1)

O(1)

O(?)

Complexity of Binary Search

 Analysis of the while loop:
◦ Iteration 1: n values to be searched

◦ Iteration 2: n/2 left for searching

◦ Iteration 3: n/4 left for searching

◦ …

◦ Iteration k+1: n/(2k) left for searching

When n/(2k) = 1, searching must finish.

i.e. n = 2k ⇒ k = log2 n

 Hence, worst-case exe time of binary

search is 𝑂(log2𝑛).

50

Performance Measurement

 Obtain actual space and time requirement

when running a program.

 How to do time measurement in code?

◦ Method 1: Use clock(), measured in clock

ticks

◦ Method 2: Use time(), measured in seconds

 To time a short program, it is necessary

to repeat it many times, and then take the

average.

51

1.7.2

Prof. Ren-Song Tsay September 10, 2018

Chapter 1 — Computer Abstractions and Technology 12

Performance Measurement

Method 1: Use clock(), measured in clock

ticks

52

#include <time.h>

void main()

{

clock_t start = clock();

// main body of program comes here!

clock_t stop = clock();

double duration = ((double) (stop-start))

/ CLOCKS_PER_SEC;

}

Performance Measurement

Method 2: Use time(), measured in seconds

53

#include <time.h>

void main()

{

time_t start = time(NULL);

// main body of program comes here!

time_t stop = time(NULL);

double duration = (double) difftime(stop,start);

}

