Prof. Ren-Song Tsay

.7

Performance
Analysis and

Si
Measurement

_)

September 10, 2018

1.7 Performance Evaluation

 Two aspects:
- Space Complexity
How much memory space is used?
» Time Complexity
How much execution time is needed?
» Two approaches:
- Performance Analysis
machine independent
a prior estimate
> Performance Measurement
machine dependent
a posterior measure

I.7.1 Uses Of Performance Analysis

> Determine practicality of algorithm
> Predict run time on large instance

» Compare algorithms with different
complexity
»>e.g., O(n) v.s. O(n?)

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay September 10, 2018

1.7.1 Performance Analysis

« Space complexity : S(P) = C + S,(I)
e C is a fixed part:

Independent of the size of input and output.
> Space for instruction and static variables,
fixed-size structured variables, constants.

e Sp(1) is a variable part:

> Depends on the specific problem instance.

Space of referenced variable and recursion
stack space (Instance Characteristics).

Instance Characteristics (1)

e Commonly used characteristics (I) include
the size of the input and output of the
problem.

* We shall concentrate solely on estimating
the 2" part, Sp(1).

 ExI.sorting(A[], n)
Then |= number of integers = n.

e Ex 2. Summation of | to n,i.e., |+2+3+...+n
Then |= value of n = n.

Space Complexity: Simple
Function

float Abc(float a, b, c)
{

return a+b+b*c+ (a+b-c)/ (a+b)+4.0;

}

el=ab,c

e C = space for the program + space for
variables a, b, ¢, Abc = constant

* Sy =0

* S(Abc) = C +S,,.(I) = constant

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay

Space Complexity : Iterative

‘Summation

September 10, 2018

float Sum(float *A, const int n)
{ float s = 0;
for (int i=0; i<n; i++)
s += A[i];
return s;

}

e [= n (number of elements to be summed)

e (= constant

e Squm(1) = 0 (A stores only the address of
array)

e S(Sum) = C + Sg,,,,,(I) = constant

Space Complexity : Recursive

‘Summation

float Rsum(float *A, const int n)
{
if (n<=0) weturn A[Q];
else return (Rsum(A, n-1) + A[n-1]1);

}

e [= n (number of elements to-be summed)

e (= constant

« Each recursive call “Rsum” requires 4(1 + 1+ 1) =
12 bytes.

* Number of calls: Rsum(4,n) > Rsum(4,n —1)
2> ... > Rsum(4,0) =2 n+1calls

e S(Rsum) = C 4+ Spy,(n) =const+ 12 (n+ 1)

1.7.1.2

Time Complexity

T(P)=C+Tp()
e (is a constant:
> Compile time.
e Tp(I) is variable:

> Execution time.

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay

Performance Analysis

e How to evaluate Tp(l) ?

> Count every Add, Sub, Multiply, ... etc.

° Practically infeasible because each instruction
takes different running time at different
machine.

e Use “program step” to estimate Tp(l)

° “program step” = a statement whose
execution time is independent of instance
characteristics(l).

abc=a+b+b*c; - one program step
a=2; - one program step

September 10, 2018

Time Complexity : Iterative
‘Summation
¢ [= n (number of elements to be summed)
eTomd) =1+n+1+n+1=2n+3
e T(Sum) = C + Tg,,,(n) = const+(2n + 3)

float Sum(float *A, const int n)

{ float s = 0; // 1 step
for (int i=0; i<n; i++) // n+l steps

s += A[i]; // n steps

return s; // 1 step

}

Time Complexity : Recursive

‘Summation

float Rsum(float *A, const int n)

{

if (n<=0) // 1 step
return A[O0]; // 1 step
else return(Rsum(A,n-1)+A[n-1]); // 1 step

}

e | = n (number of elements for summation)

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay September 10, 2018

Time Complexity : Recursive

‘Summation

float Rsum(float *A, const int n)

{

if (n<=0) // 1 step
return A[0]; // 1 step
else return (Rsum(A, n-1) + A[n-1]);// 1 step

}

¢ [= n (number of elements for summation)
° TRsum(O) =2

° TRsum(n) =2+ TRsum(n -D
2+ (2 + TRsum(n - 2))

2n+T

0) =2n+2

Rsum

Time Complexity : Matrix
Addition

void Add(int **a, int **b, int **c, int m, int n)

{

for (int i=0; i<m; i++) // m+l steps
for (int j=0; j<n; j++) // m*(n+l) steps
c[i] [J] = alil[j1+b[i]1[j]1; // m*n steps

e [= m(rows),n (columns)
e ThaahD =(mM+1)+mn+1)+mn
=2mn + 2m +1
° T(Add) =C+ TAdd(I)
= const + (2mn+2m+1)

Observation on Step Counts

¢ In the previous examples :
Tgum(m) = 2n + 3 steps
T reum(M) = 2n + 2 steps

¢ So, Rsum is faster than Sum?
> No!

° +The execution time of each step is different.

* “Growth Rate” is more critical

° “How the execution time changes in the instance
characteristics?”’

Chapter 1 — Computer Abstractions and Technology 5

Prof. Ren-Song Tsay September 10, 2018

Program Growth Rate

¢ In the Sum program, T,,.(n) = 2n + 3 means
when n is tenfold (10X), the execution time
T ¢um(n) is tenfold (10X).

* We say that Sum program runs in linear time.

e Treum(m) = 2n + 2 also runs in linear time.

* We say Tg,,,(n) and Ty,,,,(n) have the same
growth rate, and are equal in time complexity!

1.7.1.3 Asymptotic Notation

¢ To make meaningful (but inexact)
statements about the time and space
complexities of a program.
° Predict the growth rate.

* Two programs with time complexity
Pl:cin?+ c,n
P2:c3n

> Which one runs faster?

1.7.1.3 Asymptotic Notation

e Scenario |:¢c; = 1,¢, = 2,and ¢; = 100
° P1(n? + 2n) < P2(100n) for n < 98.

e Scenario 2:¢; = 1,¢, = 2,and ¢; = 1000
° P1(n? + 2n) < P2(1000n) for n < 998.

* No matter what values ¢, ¢, and c; are, there
will be an n beyond which ¢;n? + ¢,n > c3n

* Therefore, we should compare the
complexity for a sufficiently large value
ofn

Chapter 1 — Computer Abstractions and Technology 6

Prof. Ren-Song Tsay September 10, 2018

Notation: Big-O (O)

¢ Definition:
f(n) = 0(g(n)) iff there exist c,
n, > 0 such that f(n) < cg(n) for
alln > n,.
e ExI.3n+2=0(n)
°3n+2<4n foralln>2
* Ex2.100n + 6 = 0(n)
100n + 6 < 101n foralln =6
e Ex3.10n2 +4n+2 =03
10n?4+4n+2<11n? foralln>5

The upper bound or worst-case running time

Notation: Omega (Q)

* Definition: f(n) = Q(g(n)) iff
there exist ¢, n; > 0 such that
f(n) = cg(n) forall all n > n,,.

* Exl. 3n+2 = Q(n)
> since3n+2 > 3nforalln>1

* Ex2. 100n + 6 = Q(n)
> since 100n+ 6 > 100n foralln >1

* Ex3. 10n2+4n+ 2 = Q(n?)
> since 10n%2 + 4n+ 2 > n? foraln>1

The lower bound or best-case running time

Notation:Theta (©)

* Definition: f(n) = 0(g(n)) iff
f(m) = 0(g(n)) and f(n) =
Q(g(n)).

© Exl. 3n+2 = 0(n)

* Ex2. 100n + 6 = 0(n)

* Ex3. 10n*+ 4n + 2 = 0(n?)

The tight bound or average-case running time

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay September 10, 2018

Theorem 1.2

If f(n) =aun™+--+an+ayay >0,
then f(n) = 0(n™).

3n+2=0(n)

>100n+ 6 = 0(n)

»10n2 4+ 4n+ 2 = 0(n?)

6n* + 1000 n® + n? = 0(n*)

* Leading constants and lower-order terms do

not matter.

Theorem 1.2 Proof

f(n) = a,n™+ ... + an + q,
< layIn™ + ...+ |aq|n + |ag|
< n(la,| + ... + |lai| + |ag])
< nmc forn = 1

So, f(n) = 0(n™)

Quiz

en?- 10n-6=0()
°n+logn=0()
*n+nlogn=0()
°n?+logn=0()

o 20 + 10000 = O(7)

e n*+ 1000 n3+ n2 = O(n*), True or false?
e n*+ 1000 n3+ n2 = O(n®), True or false?

Chapter 1 — Computer Abstractions and Technology 8

Prof. Ren-Song Tsay September 10, 2018

Naming Common Functions

Complexity | Naming |

O(l) Constant time

O(log n) Logarithmic time

O(n log n) O(log n) £ .< O(n?)

O(n?) Quadratic time

O(n%) Cubic time

O(n'%) Polynomial time
VO(27) Exponential time

When n is large enough, the latter terms
take more time than the former ones.

1.7. ' Plot of Common Function
Fl.4 Values

60

50 -

1.7.1 . . .
118 [Execution Time Comparison

o fm]
3 4

n n nlog,n n? n n nto e

.03 us | ps | ps 10 ps 10s

.09 us 4 ps 8 us 160 ps 2.84h

15 us 9pus 27 pus 810 ps 6.83d

21 s 1.6 ps 64 L 2.56ms 121d

28us 25ps 125ps 6.25ms 3.1y

66, 10 L 100, 3171 4%
996us Ims Is _ 16.67m _3.17%103y 32%| 023y
T30 us 100 ms 16.67m T15.7d 3.17°T0%y
1.66 ms 10s 11.57d 3171y 3.17%1033y

19.92ms 16.67m 3171y 3.17%10% 3.17%10%)

us = microsecond = 10-¢ second; ms = milliseconds = 10-3 seconds
s = seconds; m = minutes; h= hours; d = days; y = years;

Chapter 1 — Computer Abstractions and Technology 9

Prof. Ren-Song Tsay September 10, 2018

Compute Execution Time in
Big-O
» Two approaches to compute the time
complexity of a program in big-O

* Approach [:
Step|: Compute the total step-count.
Step2:Take big-O using theorem |.2.

e Approach 2:
Step | : Take big-O on each step.
Step2: Sum up the big-O of all steps.

Rule of Sum

* Iffi(n) = O(g)(n)), and f,(n)=O(gy(n)), then
fi(n) + f5(n) = O(max(g,(n), g2(n))-
- Ex.f,(n) = O(n), f,(n) = O(n?)
Then f,(n) + fy(n) = O(n?).
> Ex.f;(n) = O(n), f,(n) = O(n)
Then f,(n) + f,(n) = O(n).
* Good for computing the time complexity
of a sequential program.

Rule of Product

for (i=0; i<n; i++) { /7 O(n)
for (j=0; j<n; j++) // O(n)
sum := sum + 1; // 0(1)

}

f(n) =O(n - n- 1) =0(n?).
* Iffy(n) = O(g,(n)), and f,(n)=O(g,(n)),
then f;(n) - f(n) = O(g,(n) - g5(n)).
- Ex.f,(n) = O(n), f,(n) = O(n)
Then f,(n) - fo(n) = O(n?).
* Applicable to nested loops.

Chapter 1 — Computer Abstractions and Technology 10

Prof. Ren-Song Tsay September 10, 2018

Complexity of Binary Search

int BinarySearch(int *A, const int x, const int n)
{ int left=0, right=n-1;

while (left <= right) o(?)
{ // more integers to check
int middle = (left+right)/2;— > O(1)

if (x < A[middle]) right = middle-1; ——>0(1)

else if (x > A[middle]) left = middle+l;> O(1)

else return middle; 0O(1)
} // end of while
return -1; // not found

}

Complexity of Binary Search

¢ Analysis of the while loop:
o Iteration |: n values to be searched
° Iteration 2: n/2 left for searching
° Iteration 3: n/4 left for searching

> Iteration k+1:n/(2¥) left for searching
When n/(2¥) = |, searching must finish.
iie.n =2 = k=log, n
¢ Hence, worst-case exe time of binary
search is O (log,n).

.72 Performance Measurement

» Obtain actual space and time requirement
when running a program.

* How to do time measurement in code?

> Method |:Use clock(), measured in clock
ticks

> Method 2: Use time(), measured in seconds

¢ To time a short program, it is necessary
to repeat it many times, and then take the
average.

Chapter 1 — Computer Abstractions and Technology 11

Prof. Ren-Song Tsay

Performance Measurement

September 10, 2018

Method |: Use clock(), measured in clock
ticks

#include <time.h>

void main ()
{
clock_t start = clock();
// main body of program comes here!
clock_t stop = clock();
double duration = ((double) (stop-start))
/ CLOCKS_PER_SEC;

Performance Measurement

Method 2: Use time(), measured in seconds

#include <time.h>
void main ()
{
time t start = time (NULL);

// main body of program comes here!

time t stop = time (NULL) ;

double duration = (double) difftime(stop,start);
}

Chapter 1 — Computer Abstractions and Technology

12

